Precept 11

Q1. Orthogonal polynomials with weight $w(x) = -\ln x$ on (0,1)

Consider the weighted inner product

$$\langle f, g \rangle = \int_0^1 f(x) g(x) (-\ln x) dx.$$

(a) Show, using integration by parts, that for every integer $k \geq 0$,

$$\int_0^1 x^k (-\ln x) \, dx = \frac{1}{(k+1)^2}.$$

(b) Using Gram-Schmidt on the basis $\{1, x, x^2\}$ with respect to this inner product, construct orthogonal polynomials of degrees 0, 1, 2 with positive leading coefficients.

Q2. Finite-difference endpoint correction

Recall that the Euler-Maclaurin formula states that

$$T(h) = \int_{a}^{b} f(x) dx + \frac{h^{2}}{12} (f'(b) - f'(a)) + \mathcal{O}(h^{4}),$$

where $T(h) = \sum_{i=0}^{n} f(x_i)h - \frac{h}{2}(f(x_0) + f(x_n)), x_i = a + ih, h = \frac{b-a}{n}$ is the result of the composite trapezoidal rule.

- (a) Using a finite difference scheme to approximate f'(a) and f'(b), explain how you can create an integration scheme of order $\mathcal{O}(h^4)$ by evaluating f at most n+3 times.
- (b) Using only the n+1 samples of f used to compute the trapezoidal rule, explain how you can create an integration scheme of order $\mathcal{O}(h^4)$ (use an endpoint correction to the trapezoidal rule, not Richardson extrapolation).

Q3. Spectral differentiation

Recall that the Chebyshev polynomials are defined from the three-term recurrence relation:

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{j+1}(x) = 2xT_j(x) - T_{j-1}(x)$.

Spectral differentiation is a method to estimate the derivative of a smooth function f given samples of the function on a grid. It works by evaluating the derivative of the interpolant of the function.

1

- (a) Find a recurrence formula for the derivative of Chebyshev polynomials. (it will involve both $T_j(x)$ and $T'_j(x)$)
- (b) Let $p(x) = \sum_{j=0}^{n} c_j T_j(x)$ be a Chebyshev series of degree n. Describe an $\mathcal{O}(n)$ algorithm to evaluate $p'(x^*)$ at a given point x^* .
- **Q4.** Let $x_0, \ldots, x_n \in [a, b]$ be distinct nodes. We defined the quadrature weights in two different ways:
 - (A) Moment-matching weights. The weights w_0, \ldots, w_n are defined as the unique solution of

$$\sum_{k=0}^{n} w_k x_k^{j} = \int_a^b x^{j} dx, \qquad j = 0, 1, \dots, n.$$

(B) Interpolatory-polynomial weights. Let $\ell_k(x)$ be the Lagrange basis polynomial at the nodes x_0, \ldots, x_n . Define the quadrature rule

$$Q(f) := \int_a^b p(x) dx, \qquad p(x) = \sum_{k=0}^n f(x_k) \ell_k(x),$$

and set

$$w_k := \int_a^b \ell_k(x) \, dx.$$

- (a) Show that the weights obtained from (A) and (B) are identical.
- (b) Conclude that the interpolatory quadrature rule with n+1 nodes is exact for all polynomials of degree $\leq n$.
- **Q5.** (Symmetric two–point quadrature on [-1, 1]).

A quadrature formula on the interval [-1,1] uses the quadrature points $x_0 = -\alpha$ and $x_1 = \alpha$, where $0 < \alpha \le 1$:

$$\int_{-1}^{1} f(x) dx \approx w_0 f(-\alpha) + w_1 f(\alpha).$$

The formula is required to be exact whenever f is a polynomial of degree 1.

- (a) Show that $w_0 = w_1 = 1$, independent of the value of α .
- (b) Show that there is one particular value of α for which the formula is exact also for all polynomials of degree 2. Find this α , and show that, for this value, the formula is also exact for all polynomials of degree 3.