Precept 12

Q1. Second-order ODE and Euler's method

Consider the second-order initial value problem

$$y'' + 2y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

- (a) Rewrite this as a first-order system of ODEs.
- (b) Find a matrix A such that Euler's method with step size h gives the iteration $u_{n+1} = Au_n$, where u_n is the approximation at time $t_n = nh$.

Q2. Matrix exponential and stability

Let $A \in \mathbb{R}^{n \times n}$, and consider the system of differential equations

$$\frac{dy}{dt} = -Ay, \qquad y(0) = y_0.$$

for $y(t): \mathbb{R}^+ \to \mathbb{R}^n$.

(a) Show that the solution y(t) is given by

$$y(t) = e^{-At}y_0,$$

where $e^{-At} = \sum_{k=0}^{\infty} \frac{(-At)^k}{k!}$ is the matrix exponential.

- (b) Conclude that if A is symmetric positive-definite, then the solution y(t) decays exponentially, that is $||y(t)||_2 \le e^{-ct}||y_0||_2$ for some c > 0 (hint: Diagonalize $A = Q\Lambda Q^T$ where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ and Q is orthogonal)
- (c) Still assuming that A is symmetric positive-definite, suppose we apply Euler's method to this system with step size h. For what range of h is the method stable? (i.e., when does the numerical solution also decay exponentially?)

Q3. Non-uniqueness and Picard's theorem

Suppose that m is a fixed positive integer. Consider the initial value problem

1

$$y' = y^{2m/(2m+1)}, y(0) = 0.$$

(a) Show that this problem has infinitely many continuously differentiable solutions $y:[0,\infty)\to\mathbb{R}$. Hint: For any $a\geq 0$, consider

$$y_a(x) := \begin{cases} 0, & 0 \le x \le a, \\ \left(\frac{x-a}{2m+1}\right)^{2m+1}, & x \ge a. \end{cases}$$

- (b) Explain why this does not contradict Picard's theorem.
- Q4. Consider the trapezoidal method

$$y_{n+1} = y_n + \frac{h}{2} (f_{n+1} + f_n), \qquad f_n := f(x_n, y_n), \quad h = x_{n+1} - x_n,$$

for the numerical solution of y' = f(x, y) with $y(0) = y_0$.

Define the truncation error T_n by

$$y(x_{n+1}) = y(x_n) + \frac{h}{2} (f(x_n, y(x_n)) + f(x_{n+1}, y(x_{n+1}))) + hT_n,$$

where y is the exact solution. By integrating by parts, one can show that

$$T_n = -\frac{1}{12}h^2y'''(\xi_n)$$

for some $\xi_n \in (x_n, x_{n+1})$ (you can use this part without proof).

(a) Suppose that f satisfies the Lipschitz condition

$$|f(x,u) - f(x,v)| \le L|u - v|$$

for all real x, u, v, and that $|y'''(x)| \leq M$ for some constant M > 0. Show that the global error $e_n := y(x_n) - y_n$ satisfies

$$|e_{n+1}| \le |e_n| + \frac{1}{2}hL(|e_{n+1}| + |e_n|) + \frac{1}{12}h^3M.$$

(b) Assume a constant step size h > 0 with hL < 2 and $y_0 = y(x_0)$. Show that

$$|e_n| \le \frac{h^2 M}{12L} \left[\left(\frac{1 + \frac{1}{2}hL}{1 - \frac{1}{2}hL} \right)^n - 1 \right].$$