Precept 9

Commutativity and Similarity

Problem 1.a Let A and B be two $n \times n$ diagonalizable matrices. Show that if A and B share a basis of eigenvectors, that is, there exists V such that $A = V\Lambda_A V^{-1}$ and $B = V\Lambda_B V^{-1}$ where Λ_A and Λ_B are diagonal matrices, then AB = BA.

Problem 1.b Let $q_k(x) : \mathbb{R} \to \mathbb{R}$ be a polynomial of degree k, and consider a **non-diagonalizable** matrix A. Show that $q_k(A)A = Aq_k(A)$.

Problem 1.c Let A be SPD, and define its matrix square root as $A^{1/2} = V\Lambda^{1/2}V^{-1}$ where $\Lambda^{1/2}$ is the diagonal matrix of the square roots of the eigenvalues of A. Show that $A^{1/2}q_k(A) = q_k(A)A^{1/2}$.

Evaluating matrix polynomials

Problem 2.1 Let $q(x) = \sum_{i=0}^{m} a_i x^i$ be a degree m polynomial, and let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. Show that q(A)b can be computed in m matrix-vector products with A and $\mathcal{O}(mn)$ operations.

Krylov Subspaces

Problem 3.1 Let $A \in \mathbb{C}^{n \times n}$ be nonsingular and $b \in \mathbb{C}^n$. Define the kth Krylov subspace

$$\mathcal{K}_k(A,b) = \operatorname{span}\{b, Ab, \dots, A^{k-1}b\}.$$

Suppose that for some $k \geq 1$ the subspaces stagnate:

$$\mathcal{K}_{k-1}(A,b) \subset \mathcal{K}_k(A,b) = \mathcal{K}_{k+1}(A,b).$$

1. Show that $A^k b \in \mathcal{K}_k(A, b)$, and therefore there exist coefficients $\alpha_0, \ldots, \alpha_{k-1}$ such that

$$A^k b = \sum_{j=0}^{k-1} \alpha_j A^j b.$$

2. Show that $\alpha_0 \neq 0$. (Hint: What happens if $\alpha_0 = 0$? Use the fact that A is invertible.)

1

3. Using part (b), construct a vector $x \in \mathcal{K}_k(A, b)$ such that Ax = b. Conclude that the exact solution $x_* = A^{-1}b$ lies in $\mathcal{K}_k(A, b)$.

Conjugate Gradient Method

Problem 4.1 Suppose $A \in \mathbb{R}^{805 \times 805}$ is real symmetric with eigenvalues

$$1.00, 1.01, 1.02, \ldots, 8.98, 8.99, 9.00$$
 and $10, 12, 16, 24$.

How many steps of the Conjugate Gradient method are sufficient to guarantee that

$$\frac{\|e_k\|_A}{\|e_0\|_A} \le 10^{-6}?$$

(Here $e_k = x_{\star} - x_k$ and $||v||_A := \sqrt{v^{\top} A v}$.)

You may use the following theorems proved in class:

Theorem 1 (CG Error Bound): For CG on SPD A, the A-norm error satisfies

$$\frac{\|e_k\|_A}{\|e_0\|_A} \le \min_{\substack{p \in \Pi_k \\ p(0) = 1}} \max_{\lambda \in \sigma(A)} |p(\lambda)|,$$

where Π_k denotes the set of polynomials of degree at most k.

Theorem 2 (Chebyshev Bound): For the shifted-scaled Chebyshev polynomial

$$q_m(t) = \frac{T_m\left(\frac{2t - (a+b)}{b-a}\right)}{T_m\left(\frac{-(a+b)}{b-a}\right)}, \qquad a \le t \le b,$$

we have

$$\max_{t \in [a,b]} |q_m(t)| \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^m, \qquad \kappa = \frac{b}{a}.$$

Matrix Functions

Problem 5.1 Suppose $A \in \mathbb{C}^{n \times n}$ has distinct eigenvalues. Let f(z) be a polynomial:

$$f(z) = \sum_{i=0}^{m} a_i z^i$$

for some finite degree $m \geq 0$. Let $Q^*AQ = T$ be the Schur form of A (so Q is unitary and T is upper triangular).

- 1. Show that $f(A) = Q f(T) Q^*$. Thus, to compute f(A) it suffices to compute f(T). In the rest of the problem you will derive a simple recurrence for f(T).
- 2. Show that $(f(T))_{ii} = f(T_{ii})$, so the diagonal of f(T) is obtained by applying f entrywise to the diagonal of T. (Hint: Write $T = \Lambda + N$ where Λ is diagonal and N is strictly upper triangular. When expanding $(\Lambda + N)^k$, determine which terms contribute to the diagonal entries.)
- 3. Show that T f(T) = f(T) T.